Graph Classification via Deep Learning with Virtual Nodes

نویسندگان

  • Trang Pham
  • Truyen Tran
  • Hoa Dam
  • Svetha Venkatesh
چکیده

Learning representation for graph classification turns a variable-size graph into a fixed-size vector (or matrix). Such a representation works nicely with algebraic manipulations. Here we introduce a simple method to augment an attributed graph with a virtual node that is bidirectionally connected to all existing nodes. The virtual node represents the latent aspects of the graph, which are not immediately available from the attributes and local connectivity structures. The expanded graph is then put through any node representation method. The representation of the virtual node is then the representation of the entire graph. In this paper, we use the recently introduced Column Network for the expanded graph, resulting in a new end-to-end graph classification model dubbed Virtual Column Network (VCN). The model is validated on two tasks: (i) predicting bioactivity of chemical compounds, and (ii) finding software vulnerability from source code. Results demonstrate that VCN is competitive against wellestablished rivals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking

Methods that learn representations of nodes in a graph play a critical role in network analysis since they enable many downstream learning tasks. We propose Graph2Gauss – an approach that can efficiently learn versatile node embeddings on large scale (attributed) graphs that show strong performance on tasks such as link prediction and node classification. Unlike most approaches that represent n...

متن کامل

A Deep Learning Based Behavioral Approach to Indoor Autonomous Navigation

We present a semantically rich graph representation for indoor robotic navigation. Our graph representation encodes: semantic locations such as offices or corridors as nodes, and navigational behaviors such as enter office or cross a corridor as edges. In particular, our navigational behaviors operate directly from visual inputs to produce motor controls and are implemented with deep learning a...

متن کامل

The Effect of Training in Virtual Environment on Nursing Students Attitudes toward Virtual Learning and its Relationship with Learning Style

Introduction: It is impossible to be successful in virtual training unless we consider individuals’ viewpoints toward it. Despite this fact, less attention has been paid to students’ attitudes at the end of a virtual course in the published studies. This study investigates the effect of a virtual training course on the students` attitudes toward virtual education and its relationship with learn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.04357  شماره 

صفحات  -

تاریخ انتشار 2017